
Classboxes, nested methods,
and real private methods

Shugo Maeda
2010-11-12

Self introduction

Shugo Maeda

A Ruby committer

A director of Network Applied Communication
Laboratory Ltd. (NaCl)

The co-chairperson of the Ruby Association

01 65

Where am I from?

Matsue, Shimane, Japan

A sister city of New Orleans

02 65

We are different

03 65

Please accept us

04 65

Topics

were supposed to be:

classboxes,

nested methods,

and real private methods

But...

05 65

Topic

A new feature "Refinements"

06 65

What are Classboxes?

A way to extend classes

07 65

How to extend classes in Ruby?

Subclassing

Mix-in

Singleton methods

Open classes

08 65

Subclassing

class Person
 attr_accessor :name
end

class Employee < Person
 attr_accessor :monthly_salary
end

09 65

Aspects of subclassing

Normal single inheritance

Subclassing affects only instances of the
subclasses

Implementation-only inheritance

Violations of LSP

10 65

LSP

Liskov Substitution Principle

An instance of a subtype must behave like an
instance of the supertype of the subtype

An instance of the supertype can be substituted with
an instance of the subtype

11 65

An example of LSP

def print_name(person)
 puts person.name
end

shugo = Person.new
shugo.name = "Shugo Maeda"
print_name(shugo) #=> Shugo Maeda
matz = Employee.new
matz.name = "Yukihiro Matsumoto"
print_name(matz) #=> Yukihiro Matsumoto

12 65

A typical LSP violation

class Rectangle
 attr_accessor :width, :height
end

class Square < Rectangle
 def set_size(x) @height = @width = x end
 alias width= set_size
 alias height= set_size
end

def set_size(rect)
 rect.width = 80; rect.height = 60
end
square = Square.new
set_size(square)
p square.width #=> not 80, but 60!

13 65

A Ruby-specific LSP violation

class Employee < Person
 undef name
end

def print_name(person)
 puts person.name
end

matz = Employee.new
matz.name = "Yukihiro Matsumoto"
print_name(matz) #=> undefined method `name'...

14 65

Subclassing != Subtyping

Implementation-only inheritance

Duck typing

15 65

Mix-in

class; Stream; ... end
module Readable; ... end
module Writable; ... end

class ReadStream < Stream
 include Readable
end
class WriteStream < Stream
 include Writable
end
class ReadWriteStream
 include Writable, Readable
end

16 65

Aspects of mix-in

Limited multiple inheritance

Only modules can be multiply inherited

A module has no instances

Modules are also used as namespaces for
constants

17 65

Singleton methods

matz = Person.new
def matz.design_ruby
 ...
end
matz.design_ruby
shugo = Person.new
shugo.design_ruby #=> NoMethodError

18 65

Aspects of singleton methods

Clients of a class can extend the behavior of an
instance of the class

A singleton method defines the behavior of only
one particular instance

Some objects cannot have singleton methods

e.g., instances of Integer

19 65

Open classes

reopen Person, and add code
class Person
 attr_accessor :age
end
shugo = Person.new
shugo.name = "Shugo Maeda"
shugo.age = 34

20 65

Aspects of open classes

Clients of a class can extend the behavior of
instances of the class

Classes are extended globally

21 65

Applications of open classes

Ruby on Rails

ActiveSupport

Plugins

jcode

mathn

22 65

LSP and open classes

s/subtype/class after reopen/g

s/supertype/class before reopen/g

Instances of a class after a reopen must
behave like instances of the class before the
reopen

23 65

an LSP violation

p 1 / 2 #=> 0
require "mathn"
p 1 / 2 #=> (1/2)

24 65

Summary

Subclassing not by clients

Mix-in not by clients

Singleton methods per object

Open classes global

25 65

Extensibility and Modularity

Subclassing, mix-in, and singleton methods are
less extensible

Open classes are less modular

26 65

What we need

Class extensions

by clients

per class

local

27 65

Possible solutions

selector namespace

Classboxes

28 65

selector namespace

Implemented in SmallScript and ECMAScript 4

A namespace of method names (selectors)

A namespace can be imported into other
namespaces

Lexically scoped

29 65

Classboxes

Implemented in Squeak and Java

A classbox is a module where classes are
defined and/or extended

A classbox can be imported into other
classboxes

Dynamically scoped

called local rebinding

30 65

An example of Classbox/J

package Foo;
public class Foo { ... }

package Bar;
import Foo;
refine Foo { public void bar() { ... } }

package Baz;
import Bar;
public class Baz {
 public static void main(String[] args) {
 new Foo().bar();
 }
}

31 65

An example of local rebinding

package Foo;
public class Foo {
 public void bar() { System.out.println("original"); }
 public void call_bar() { bar(); }
}

package Bar;
import Foo;
refine Foo { public void bar() { System.out.println("refined"); } }

package Baz;
import Bar;
public class Baz {
 public static void main(String[] args) {
 new Foo().call_bar();
 }
}

32 65

Is local rebinding needed?

Local rebinding is less modular

Callees might expect the original behavior

Singleton methods and open classes can be
alternatives

However, effective scopes are different

33 65

Refinements

A newly implemented feature of Ruby

Not merged into the official Ruby repository

Refinements of classes are defined per module

Effective scopes are explicitly specified

no local rebinding

Classbox/J like syntax

34 65

An example of Refinements

module MathN
 refine Fixnum do
 def /(other) quo(other) end
 end
end

class Foo
 using MathN

 def bar
 p 1 / 2 #=> (1/2)
 end
end
p 1 / 2 #=> 0

35 65

Demo

36 65

Module#refine

refine(klass, &block)

Additional or overriding methods of klass are
defined in block

a set of such methods is called a refinement

Activated only in the receiver module, and
scopes where the moduleis imported by using

refine can also be invoked on classes

37 65

Class local refinements

class Foo
 refine Fixnum do
 def /(other) quo(other) end
 end

 def bar
 p 1 / 2 #=> (1/2)
 end
end
p 1 / 2 #=> 0

38 65

Kernel#using

using(mod)

using imports refinements defined in mod

Refinements are activated only in a file,
module, class, or method where using is
invoked

lexically scoped

39 65

An example of using

using A # A is activated in this file

module Foo
 using B # B is activated in Foo (including Foo::Bar)

 class Bar
 using C # C is activated in Foo::Bar

 def baz
 using D # D is activated in this method
 end
 end
end

40 65

Module#using

using(mod)

Module#using overrides Kernel#using

The basic behavior is the same as Kernel#using

Besides, Module#using supports reopen and
inheritance

41 65

An example of Module#using

module A; refine(X) { ... } end
module B; refine(X) { ... } end
class Foo; using A end
class Foo
 # A is activated in a reopened definition of Foo
end
module Bar
 using B
 class Baz < Foo
 # A is activated in a subclass Baz of Foo
 # A has higher precedence than B
 end
end

42 65

using and include

module A; refine(X) { ... } end
module Foo; using A end
class Bar
 include Foo
 # include does not activate A
end

43 65

Precedence of refinements

Refinements imported in subclasses have
higher precedence

Later imported refinements have higher
precedence

Refinements imported in the current class or its
superclasses have higher precedence than
refinements imported in outer scopes

If a refined class has a subclass, methods in
the subclass have higher precedence than
those in the refinement

44 65

An example of precedence

class Foo; end
module Bar; refine Foo do end end
module Baz; refine Foo do end end
class Quux < Foo; end
class Quuux
 using Bar
end
module Quuuux
 using Baz
 class Quuuuux < Quuux
 def foo
 # Quux -> Bar -> Baz -> Foo
 Quux.new.do_something
 end
 end
end

45 65

Using original features

super in a refined method invokes the original
method, if any

If there is a method with the same name in a
previously importedrefinements, super invokes
the method

In a refined method, constants and class
variables in the original class is also accessible

46 65

An example of super

module FloorExtension
 refine Float do
 def floor(d=nil)
 if d
 x = 10 ** d
 return (self * x).floor.to_f / x
 else
 return super()
 end
 end
 end
end
using FloorExtension
p 1.234567890.floor #=> 1
p 1.234567890.floor(4) #=> 1.2345

47 65

special eval

Refinements are also activated in
instance_eval, module_eval, and class_eval

48 65

An example of special eval

class Foo
 using MathN
end
Foo.class_eval do
 p 1 / 2 #=> (1/2)
end
Foo.new.instance_eval do
 p 1 / 2 #=> (1/2)
end

49 65

Compatibility

No syntax extensions

No new keywords

The behavior of code without refinements never
change

However, if existing code has a method named
refine or using, it may cause some problems

50 65

Applications of refinements

Refinements of built-in classes

Internal DSLs

Nested methods

51 65

Refinements of built-in classes

Refinements are activated in particular scopes

So you can violate LSP like MathN

Refinement inheritance is useful for frameworks

52 65

Example

class ApplicationController < ActionController::Base
 using ActiveSupport::All
 protect_from_forgery
end

class ArticlesController < ApplicationController
 def index
 @articles = Article.where("created_at > ?", 3.days.ago)
 end
end

53 65

Internal DSLs

Methods for DSLs need not be available
outside DSLs

So these methods can be defined in refinements

instance_eval and module_eval are useful for
DSLs

54 65

Example

module Expectations
 refine Object do
 def should ... end
 ...
 end
end

def it(msg, &block)
 Expectations.module_eval(&block)
end

it "returns 0 for all gutter game" do
 bowling = Bowling.new
 20.times { bowling.hit(0) }
 bowling.score.should == 0
end

55 65

Nested methods

def fact(n)
 # fact_iter is defined in refinements
 # available only in fact
 def fact_iter(product, counter, max_count)
 if counter > max_count
 product
 else
 fact_iter(counter * product,
 counter + 1, max_count)
 end
 end

 fact_iter(1, 1, n)
end

56 65

Benchmark

make benchmark (5 times)

Environment

CPU: Intel Core 2 Duo U7600 1.2GHz

RAM: 2GB

OS: Linux 2.6.34 (Ubuntu 10.04)

57 65

Additional benchmarks

For refinements

bm_ref_factorial.rb

bm_ref_fib.rb

For nested methods

bm_ref_factorial2.rb

58 65

bm_ref_factorial.rb

if defined?(using)
 module Fact
 refine Integer do
 def fact ... end
 end
 end
 using Fact
else
 class Integer
 def fact ... end
 end
end

59 65

Benchmark result

Average 2.5% slower than the original Ruby

60 65

Samples

61 65

Considerations

Should include and using be integrated?

Should modules be refinable?

Should singleton methods be refinable?

Implementation improvement

62 65

Patch

http://shugo.net/tmp/refinement-
r29498-20101109.diff

63 65

Conclusion

Refinements achieve a good balance between
extensibility and modularity

64 65

Thank you

Any questions?

65 65

