Ruby's past, present, and future

Nov 8th, 2011
Shugo Maeda

Self introduction

e Shugo Maeda

« Twitter ID: @shugomaeda

* A Ruby committer

* The co-chairman of the Ruby Association

A director of Network Applied
Communication Laboratory Ltd.

* Ruby's past,

* present,

e and future

Ruby's past

’ The birth of Ruby

e Born on February 24th 1993

- Just the name

* Father: Yukihiro Matsumoto, a.k.a. Matz
« Godfather: Keiju Ishitsuka

How was the name Ruby chosen?

kei1ju> Come to think of 1t, did you come up with the name

of the language?
matz> Hmm, 1f 1t's similar enough to shells, Tish.

matz> But I need a more cool name

keiju> ruby

keiju> Of course, 1t should be a jewel name
matz> Is 1t taken from ruby annotation?
matz> Why should it be a jewel name?

matz> Affected by Mitsubishi?

kei1ju> perl

matz> I see

’ Ruby 0.49

e The oldest version available

- available at ftp.ruby-lang.org

» Released privately in July 1994

Hello world in Ruby 0.49

print("Hello world\n") I

* |s it the same as Ruby 1.9?

- Yes, and no
- Parentheses are necessary in Ruby 0.49

Not valid in Ruby 0.49
print "Hello world\n"

Hello world in Python

$ python2.6 -c 'print "hello"’
hello
$ python3.1 -c 'print "hello™'
File "<string>", line 1
print "hello”
A

SyntaxError: invalid syntax
$ thh0n3.1 -C 'printcuhellou)v
hello

',

« Convenience over Consistency

 In Python, the print statement was removed
for consistency

 In Ruby, parenthesis omission was
supported for convenience

Example code in Ruby 0.49

class greeting
def !'=Carray) # != can be overridden
do array.each using x # old syntax for blocks
@say_hello(x)

end
fail("error™) # raises an exception
end def # optional keyword after end
def @say_hello(x) # private method
print("Hello, ", x, "!I\n")
end def

end class

H- Example code in Ruby 0.49 (cont'd)

protect # beglin
g = greeting.new()
g != ("Matz" :: "Larry") # a cons cell
print("success\n")

resque

print("failed\n")
end protect

e resque is a typo by Matz
- Not by me!

Does it look like Ruby?

* No!
« But it already had essential features:

— Interpreter
- Pure object oriented

- Dynamically typed
- Garbage collection
- Blocks

What was Ruby created for?

e For UNIX
* For easy object-oriented programming
e For fun

Ruby for UNIX

* Ruby was created for UNIX

* Developed on SONY NEWS-0OS
» Easy scripting like Perl

* APls tied closely to UNIX/C

- Not self-contained in contrast to Smalltalk
— Better UNIX
— Emulation for non-Unix OS

APls came from UNIX/C

* open o fcntl
* read e joctl
» gets o stat
o write select
e printf getuid
* puts * setuid

e fork

Better UNIX

« Some API's origins are in UNIX/C
» However, their behavior is improved

« Examples

- |Otteof? returns true before read fails
while feof(3) does't.

- |O.select can be used for buffered IO
while select(2) can't.

by for object-oriented programming

* Problem
- Object-oriented programming is excellent
- But too heavy for daily scripting
 Solution

- Non-OO style syntax
- Pure object-oriented semantics

Non-OOQO style syntax

def fib(n)
1f n < 2

return n
else
return fib(n - 2) + fib(n - 1)
end
end
puts fib(20)

» fib is just a function, isn't it?

Pure object-oriented semantics

* Recelvers can be omitted
- fib(20) is a short form of self.fib(20)
» At top level:

- self is an instance of Object
- def defines a method in Object

 All data including integers are objects
* Most operators such as - are methods

’ Ruby for fun

 For Matz's fun

- Creating a new language was his dream
* For your fun

- Who are YOU?
- YOU = programmers

My first contact with Ruby

e |n 1997

| was a Java programmer
- Please don't throw a stone at me!

« Posted my regexp library in a Java ML
« Someone said "Ruby's Regexp is better"
 Threw away Java, and fell in love with Ruby

« Got involved with Ruby development

How | learned to stop worrying and love Ruby

* My worries were:
- Ruby is unpoplular, isn't it?
- Ruby is slow, isn't it?

- Dynamic typing is unsafe, isn't it?

Ruby is unpopular, isn't it?

* Yes, It was.
— No books

- No real world applications
- No recruitment for Ruby programmers
« But all the more, Ruby was worth learning

- Ruby was my "Secret Weapon"
- Read Paul Graham's "Beating the Averages"”

Ruby is slow, isn't it?

 Yes, it's slow because it's:
- Dynamically typed

« Can't use type information for optimization
- Pure object oriented

* No primitive types like int in Java
- Extremely dynamic

 Method redefinition etc...

e But, the slowness is acceptable

- At least for I/O bound applications

Dynamic typing is unsafe, isn't it?

* Yes, so write test code
* Ruby programming is like riding a
motorcycle

- You can go anywhere anytime you want
- But you may sometimes slip down

e |t's fun for me

Ruby 1.0 - 1.6

« 1997 - 2002
 Many changes

’ Ruby 1.8

* The first release was on Aug 4th 2003
« Stable
* The most successful version of Ruby

Ruby 1.8 is past

« 1.8.8
- Never released
e 1.8.7

- Only bug fixes until June 2012
- Only security fixes until June 2013

Some of my past works

* puts
e callcc
* protected

 writeln and println were rejected

- They came from Pascal and Java
- Matz likes neither Pascal nor Java

| proposed the name puts [ruby-dev:771]
- It came from C

- Matz likes C

- The behavior is a bit weird
e puts [1,2,3]

' callcc

e Introduced callcc into Ruby [ruby-dev:4206]

e callcc = call with current continuation

e |t provides first class continuations

e It came from Scheme
« Removed from built-in libraries in Ruby 1.9
* It may be completely removed in Ruby 2.0

Example of callcc

01:
02:
03:
04 :
05:
006:
07:
08:
09:
10:
11:
12:

require "continuation"

cont = nil

x = callcc { Icl

cont = C
"first"
ks
D X
1f X == "first"
go to line 04 with value "second"
cont.call("second")
end

Non-deterministic problems

Baker, Cooper, Fletcher, Miller, and Smith live on different floors
of an apartment house that contains only five floors.

Baker does not live on the top floor.

Cooper does not live on the bottom floor.

Fletcher does not live on either the top or the bottom floor.
Miller lives on a higher floor than does Cooper.

Smith does not live on a floor adjacent to Fletcher's.
Fletcher does not live on a floor adjacent to Cooper's.

Where does everyone live?

Solution

require "amb"

a = Amb.new

baker = a.choose(1, 2, 3, 4, 5)
cooper = a.choose(l, 2, 3, 4, 5)
fletcher = a.choose(l, 2, 3, 4, 5)
miller = a.choose(l, 2, 3, 4, 5)
smith = a.choose(l, 2, 3, 4, 5)

d
d
d
d
d
d
d

p [baker, cooper, fletcher, miller, smith]

.assert([baker, cooper, fletcher, miller, smith].uniq.length == 5)
.assert(baker '= 5)

.assert(cooper !'= 1)

.assert(fletcher !'= 1 & fletcher != 5)

.assert(miller > cooper)

.assert((smith - fletcher).abs != 1)

.assert((fletcher - cooper).abs != 1)

Implementation of Amb

class Amb

def choose(*choices)
choices.each { Ichoicel
callcc { Ifkl
@back << fk
return choice

}
¥

failure
end

def failure
@back.pop.call
end

def assert(cond)
failure unless cond
end

Why callcc is evil

* Objects are mutable in Ruby
- callcc doesn't restore the state of objects
* C calls and Ruby calls are nested in Ruby

- C calls are also restored by callcc
- Most C code doesn't take care of it

protected

* Method visibility
» Equivalent to Java's protected

» Useful to implement binary operators
def ==(other)

@repr == other.repr # error if repr 1is private
end

protected

def repr; @repr; end

abnormal use of protected

« Often seen in Rails applications

class ApplicationController < ActionController::Base
before_filter :login_required

protected # Why not private?

def login_required

« Use private instead if possible

- private methods can be called from subclasses

Ruby's present

Mainstream Language

ndex (October 2011)

T =TT G T o [
8 7 l Python 3.044% | -002% | A
g g Perl 2432% | +0.12% | A
10 11 1 JavaScript 2191% | +053% | A
11 10 | Ruby 1526% | -041% | A
12 12 DelphilObject Pascal 1.104% | -045% | A
13 13 Lisp 1031% | -005% | A

 "A" means mainstream

’ Ruby on Rails

« Rails made Ruby more popular

« Rails may be more popular than Ruby

Difference between Ruby and Rails?

' Forum: Ruby on Rails

Whats the difference between "Ruby" and
"Ruby on Rails"

Forum List | Topic List | New Topic | Search | Register | User List | Log In

Whats the difference between "Ruby" and "Ruby on Rails"
Posted by desbest (Guest) on 2007-12-08 02:22 P-4

Whats the difference between "Ruby™ and "Ruby on Rails™

I've looked, but cannot find anything.

Edit | Move | Delete topic | Reply with quote

Same gquestion in Japan

lé Ruby & Ruby on Rails &L 37

oogieboogielightmr= As

Ruby & Ruby on Rails MEWLMVE 7

OSSO0 ETT. B0 IS CEREEL RO EL . EABIZRub
yEMEL £S5 EB-TLVET . LA LRubylZIZRuby&ERuby on Rails&ELVo DA HEYET.
+_TC:

1. Ruby & Ruby on Rails MEWILZATTM?
2. Ruby on Rails [Z7L—LJ—2&VNAETH, L —LI7—2LZ0ATT M ?

Ruby standard

« JIS X 3017

- published on March 22nd 2011
- JIS = Japanese Industrial Standards

» ISO/IEC JTC1 Fast-

rack procedure

- "Voting closed 6 September; it received a
100% approval. Only Japan made

comments.”

* http://grouper.ieee.org/groups/plv/DoclLog/300-
399/360-thru-379/22-WG23-N-0364/n0364.pdf

Why Ruby standard?

» Business reasons

— Tranquilizer for enterprise users

- Necessary for government procurement
» Technical reason

- Written specification may help development

* | have found some bugs in CRuby:)
e The standard may also have bugs:(

How Ruby has been standardized

« Codified the existing (implicit) specification
- No new invention by the standardization WG
- Ruby development is kept free

e Asked public comments from the community

— QOver 100 comments

’ Ruby 1.9

* New implementation

* New syntax
 Other new features

’ New implementation

 YARV = Yet Another Ruby VM
* It's now the Ruby VM

» Word-code interpreter

- The size of opcode and operands is the size
of pointers

» Faster than Ruby 1.8

’ New syntax

* New hash syntax

* New syntax for blocks and lambda
« Extended splat

New hash syntax

New hash syntax
h={a: 1, b: 2, c: 3}
equivalent to h = {:a=>1, :b=>2, :c=>3}

Use new hash syntax for optional arguments
foo optl: 123, opts2: 456

« Hash is now ordered

New syntax for blocks and lambda

extended block parameters

foreach = lambda { |I1list, method = :each, &blockl
list.send(method, &block)

5

foreach.call([1,2,3]) do |1l
p 1

end

New lambda syntax

add = ->(x, y) { x+y}
p add.(1, 2) # same as add.call(l, 2) or add[1l, 2]

Extended splat

Other new features

« M17N
e Fiber
e Enumerator

’ M17N

« M17N = multilingualization

« Code Set Independent (CSI)
- Not UCS Normalization

- Unicode is just one of supported character sets

 Strings are character strings

- In Ruby 1.8, strings are byte strings

e« Semi-coroutines

e Coroutines are similar to subroutines
- But have multiple entry points
« Semi-coroutines are restricted coroutines

- Parent/child relationship

Example of Fiber

fib = Fiber.new {
i, =0, 1
Fiber.yield(1)
Fiber.yield(3)
loop do
-i-aj=j,-i-+j
Fiber.yield(j)
end

¥

10.t1mes do
puts fib.resume
end

Enumerator

« Some methods return Enumerator
- String#lines, String#chars etc.
 Enumerator is a lazy list

e Enumerator is Enumerable

e Enumerator is an external iterator

Example of Enumerator

s = <<EOF

ruby

perl

python

EOF

puts s.lines.each_with_index.select { [line, 1l
/p/ =~ line

y.map { Iline, 1l
format("%3d: %s", 1 + 1, line)

¥

Enumerator as an external iterator

lines = ARGF.1l1ines
10.t1mes do

puts lines.next
end

Ruby 1.9 is present

* Everyone should use it now

« Migration from Ruby 1.8 to 1.9 is easier than
migration from Rails 2 to Rails 3

Recent trends in Ruby

* Functional programming

* Monkey patching

Functional programming

« "a programming paradigm that treats
computation as the evaluation of
mathematical functions and avoids state
and mutable data" from Wikipedia

Concepts in functional programming

» Pure functional functions

- No side effects

- EXxpressions over statements
» Higher-order functions

- Take functions as arguments
- Return functions

Functional programming in Ruby

« Advantages

- Blocks and lambda
- Methods like higher-order functions

* Enumerable#map etc...
- Almost everything is an expression

« Disadvantages

— No real function
- Almost everything is mutable

" New features for functional programming

* Proc#curry
 Enumerable#flat_map

Proc#curry

« Useful for partial application

add = lambda { Ix, yl
X + Y
5
curried_add = add.curry
=> lambda {Ix| lambda {lyl x + y}}
addl = curried_add.call(l)
p addl.call(2) #=> 3

Enumerable#flat_map

def queens(n, k = n)
if k == 0
L[]
else
queens(n, k - 1).flat_map {lIgsl
(1..n).map {lcoll [k, col]}.select {Iql
gs.all? {lqg2l
gq[l] '= g2[1] &&
} (q[@] - g2[@]).abs != (q[1l] - g2[1]).abs

} f.map {lql [q, *qgs]}

end
end

Monkey patching

e Classes and modules are also mutable

e Runtime extension of classes and modules

Use cases of monkey patching

« Workaround for a bug of a library
* Plugin system like Rails

o Extensions of built-in classes

- Often used for internal DSLs

@empty_array.size.should == I

alias method chain

ActionView: :Helpers: :RenderingHelper.module_eval do
def render_with_update(options = {}, locals = {},

&block)
1f options == :update
update_page(&block)
else
render_without_update(options, locals, &block)
end
end

alias_method_chain :render, :update
end

Ruby's future

’ Ruby 2.0

* Had been a vaporware for a long time
- Matz mentioned Ruby 2.0 at RubyConf 2001
« Something like Web 2.07

Ruby 2.0 is real

$ ruby-trunk -v

ruby 2.0.0dev (2011-10-31 trunk 33588) [1686-11nux]
$ fgrep -B2 '2.0' Changelog

Wed Oct 19 17:06:54 2011 Yukihiro Matsumoto <matz@
ruby-lang.org>

* version.h (RUBY_VERSION): finally declare start
of 2.0 work!
$

Ruby 2.0 is future

e |t's near future

» Current schedule
- Aug 24th 2012 big-feature freeze

- Oct 24th 2012 feature freeze
- Feb 2nd 2013 2.0 release

New features in Ruby 2.0

* Accepted features
- Keyword arguments
- Module#prepend

* Not accepted features

- Enumerable#lazy
- Refinements

Keyword arguments

 support for formal arguments

def foo(x, y, *a, optl: "foo", opt2: 0, **h)
p [X, y, a, optl, optZ2, h]

end

foo(l, 2, 3, 4, optl: "bar", opt2: 2, opt3: 2)

#=> [1, 2, [3, 4], "bar", 2, {:opt3=>3}]

e opt1: "foo" defines a keyword argument opt1
whose default value is "foo"

* **h receives the rest keyword arguments

Module#prepend

* Replacement of alias_method chain

module RenderUpdate
def render(options = {}, locals = {}, &block)

1f options == :update
update_page(&block)
else

call the original RenderingHelper#render
super(options, locals, &block)
end
end
end
ActionView: :Helpers: :RenderingHelper.module_eval do
prepend RenderUpdate
end

Enumerable#lazy

* Proposed by @yhara

def pythagorean_triples
(1..Float::INFINITY).lazy.flat_map {lzl
(1..z).lazy.flat_map {|x|
(x..z).lazy.select {lyl

X¥*2 4 y¥*2 —= z**)
+t.map {lyl
[X, ¥y, z]
ks
ks
ks
end

p pythagorean_triples.take(10)

" Considerations for Enumerable#lazy

* |s lazy a good name?
- Is view, delay, or defer better?
* Is lazy necessary?

- Why not Enumerator#map returns an
Enumerator instead of an Array?

A ENE S

« Scoped monkey patching

module MathN
refine Fixnum do
def /(other)
quo(other)
end
end
end
module Foo
using MathN
pl1l/ 2 #=> (1/2)
end
pl/ 2 #=> 0

Considerations for Refinements

 Performance issue
- It's slow even if refinements are not used
e Scope of refinements

- Lexical scoping is safe, but not flexible
- Do we need refinement propagation?

Who creates Ruby's future?

2011 Call for grant proposals

« Grants for development projects
* Anyone can submit proposals

« Grant size: 500,000 yen (JPY)

» Selection criteria

- Impact on the productivity and performance
of Ruby and its environment

- Originality and creativity of the project
- Feasibility of the project

’ How to submit a proposal

e Please send an emall

 See our web site for details

- http://www.ruby-assn.org/en/releases/
20111025 _grant.htm

Conclusion

Ruby's past

* Ruby was created for fun
* Ruby 1.8 is past

Ruby's present

e Ruby is now mainstream
* Ruby 1.9 Is present

Ruby's future

« Ruby 2.0 is future
* You can change it!

Thank you!

Any questions?

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52
	ページ 53
	ページ 54
	ページ 55
	ページ 56
	ページ 57
	ページ 58
	ページ 59
	ページ 60
	ページ 61
	ページ 62
	ページ 63
	ページ 64
	ページ 65
	ページ 66
	ページ 67
	ページ 68
	ページ 69
	ページ 70
	ページ 71
	ページ 72
	ページ 73
	ページ 74
	ページ 75
	ページ 76
	ページ 77
	ページ 78
	ページ 79
	ページ 80
	ページ 81
	ページ 82
	ページ 83
	ページ 84
	ページ 85
	ページ 86
	ページ 87
	ページ 88
	ページ 89
	ページ 90

